设置
Copy
Ask AI
npm install @mastra/core @mendable/firecrawl-js zod
.env 文件:
Copy
Ask AI
FIRECRAWL_API_KEY=your_firecrawl_key
OPENAI_API_KEY=your_openai_key
注意: 如果使用 Node 版本低于 20,请安装dotenv,并在代码中添加import 'dotenv/config'。
多步工作流
Copy
Ask AI
import { createWorkflow, createStep } from "@mastra/core/workflows";
import { z } from "zod";
import Firecrawl from "@mendable/firecrawl-js";
import { Agent } from "@mastra/core/agent";
const firecrawl = new Firecrawl({
apiKey: process.env.FIRECRAWL_API_KEY || "fc-YOUR_API_KEY"
});
const agent = new Agent({
name: "summarizer",
instructions: "你是一个能够为文档创建简洁摘要的助手。",
model: "openai/gpt-5-nano",
});
// 步骤 1:使用 Firecrawl SDK 进行搜索
const searchStep = createStep({
id: "search",
inputSchema: z.object({
query: z.string(),
}),
outputSchema: z.object({
url: z.string(),
title: z.string(),
}),
execute: async ({ inputData }: { inputData: { query: string } }) => {
console.log(`正在搜索: ${inputData.query}`);
const searchResults = await firecrawl.search(inputData.query, { limit: 1 });
const webResults = (searchResults as any)?.web;
if (!webResults || !Array.isArray(webResults) || webResults.length === 0) {
throw new Error("未找到搜索结果");
}
const firstResult = webResults[0];
console.log(`已找到: ${firstResult.title}`);
return {
url: firstResult.url,
title: firstResult.title,
};
},
});
// 步骤 2:使用 Firecrawl SDK 抓取 URL
const scrapeStep = createStep({
id: "scrape",
inputSchema: z.object({
url: z.string(),
title: z.string(),
}),
outputSchema: z.object({
markdown: z.string(),
title: z.string(),
}),
execute: async ({ inputData }: { inputData: { url: string; title: string } }) => {
console.log(`正在抓取: ${inputData.url}`);
const scrapeResult = await firecrawl.scrape(inputData.url, {
formats: ["markdown"],
});
console.log(`已抓取: ${scrapeResult.markdown?.length || 0} 个字符`);
return {
markdown: scrapeResult.markdown || "",
title: inputData.title,
};
},
});
// 步骤 3:使用 Claude 生成摘要
const summarizeStep = createStep({
id: "summarize",
inputSchema: z.object({
markdown: z.string(),
title: z.string(),
}),
outputSchema: z.object({
summary: z.string(),
}),
execute: async ({ inputData }: { inputData: { markdown: string; title: string } }) => {
console.log(`正在生成摘要: ${inputData.title}`);
const prompt = `用 2-3 句话总结以下文档:\n\n标题: ${inputData.title}\n\n${inputData.markdown}`;
const result = await agent.generate(prompt);
console.log(`摘要已生成`);
return { summary: result.text };
},
});
// 创建工作流
export const workflow = createWorkflow({
id: "firecrawl-workflow",
inputSchema: z.object({
query: z.string(),
}),
outputSchema: z.object({
summary: z.string(),
}),
steps: [searchStep, scrapeStep, summarizeStep],
})
.then(searchStep)
.then(scrapeStep)
.then(summarizeStep)
.commit();
async function testWorkflow() {
const run = await workflow.createRunAsync();
const result = await run.start({
inputData: { query: "Firecrawl 文档" }
});
if (result.status === "success") {
const { summarize } = result.steps;
if (summarize.status === "success") {
console.log(`\n${summarize.output.summary}`);
}
} else {
console.error("工作流失败:", result.status);
}
}
testWorkflow().catch(console.error);

